
冷知識篇

五倍學院

為你自己學  
PYTHON

高見龍



五倍學院

自我介紹

高見龍 @ 五倍學院 

๏ 程式開發 ≒ 30 年 

๏ 教學經驗 ≒ 16 年 

๏ 出版： 

๏「為你自己學 Git」 

๏「為你自己學 Ruby on Rails」 

๏「為你自己學 Python」 

๏ 是個喜歡打魔物獵人而且希望可以寫一
輩子程式的電腦阿宅



高見龍
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你寫 Python 嗎？
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你是不是用別的語言在寫 Python？
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重點是好玩！ 
（提示：可能還會有獎品）
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關於這本書...

自己做一次就會知道在台灣寫電腦書不會賺錢...
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Q. 以下這幾種程式語言，誰最老？

1) Java                                       2) JavaScript                                3) Python 

4) Ruby                                     5) PHP



1) Java (1995)                           2) JavaScript (1995)                     3) Python (1991) 

4) Ruby (1995)                         5) PHP (1995)

Q. 以下這幾種程式語言，誰最老？



Q. 以下程式碼的執行結果為何？

1) ["小傑", "雷歐力", "酷拉皮卡"]              2) ["奇犽", "西索", "尼飛彼多"] 

3) 別騙我了，這程式根本不會動             4) 我只想整套獵人卡片！

def add_card(bk, card): 
    bk.append(card) 
    bk = ["奇犽", "西索", "尼飛彼多"] 

book = ["小傑", "雷歐力"] 
add_card(book, "酷拉皮卡") 

print(book)  # 這會印出什麼？



Q. 以下程式碼的執行結果為何？

1) ["小傑", "雷歐力", "酷拉皮卡"]              2) ["奇犽", "西索", "尼飛彼多"] 

3) 別騙我了，這程式根本不會動             4) 我只想整套獵人卡片！

def add_card(bk, card): 
    bk.append(card) 
    bk = ["奇犽", "西索", "尼飛彼多"] 

book = ["小傑", "雷歐力"] 
add_card(book, "酷拉皮卡") 

print(book)  # 這會印出什麼？



Q. 以下程式碼的執行結果為何？

1) 1                                                                 2) 101 

3) 100                                                            4) 程式會出錯

x = 100 

def add_one(x): 
    x = x + 1 
    return x 

add_one(x) 
print(x)  # 會印出什麼？



Q. 以下程式碼的執行結果為何？

1) 1                                                                 2) 101 

3) 100                                                            4) 程式會出錯

x = 100 

def add_one(x): 
    x = x + 1 
    return x 

add_one(x) 
print(x)  # 會印出什麼？
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Python 的變數宣告？
Python 沒有像其他程式語言一樣有 var 或 let 的「宣告變數」關鍵字，當遇

到 x = 1 的寫法的時候，Python 會從「作用域」來判斷是不是需要宣告一個新的

變數 x，還是試著去找既有的變數 x 然後把它的值設定成 1。

 參考資料：https://pythonbook.cc/chapters/basic/function#a--1 



Q. 以下程式碼的執行結果為何？

1) 還是 0                                                       2) 1 

3) 2                                                               4) 這程式會出錯

i = 0 

def add_i(): 
    i = i + 1 

add_i() 
print(i) # 這會印出什麼



Q. 以下程式碼的執行結果為何？

1) 還是 0                                                       2) 1 

3) 2                                                               4) 這程式會出錯

i = 0 

def add_i(): 
    i = i + 1 

add_i() 
print(i) # 這會印出什麼



Q. 最後印出來的值，哪一個會跟其它三個不同？

1) res1                                                            2) res2 

3) res3                                                          4) res4

# 檔案：hello.py 
a = 100 
b = 200 

def hey(): 
    return 300 

res1 = 300 
res2 = 100 + 200 
res3 = a + b 
res4 = hey()

print(id(res1)) 
print(id(res2)) 
print(id(res3)) 
print(id(res4))



Q. 最後印出來的值，哪一個會跟其它三個不同？
print(id(res1)) 
print(id(res2)) 
print(id(res3)) 
print(id(res4))

1) res1                                                            2) res2 

3) res3                                                          4) res4

# 檔案：hello.py 
a = 100 
b = 200 

def hey(): 
    return 300 

res1 = 300 
res2 = 100 + 200 
res3 = a + b 
res4 = hey()
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參考資料：https://kaochenlong.com/2024/10/13/same-value-but-different-object-in-python.html



Q. 以下程式碼的執行結果為何？

1) True / True / True                                   2) True / True / False 

3) False / False / True                                4) False / False / False

a = 7 
b = 11 
c = a - b 
print(c is -4) # 這會印出什麼？ 

c = c - 1 
print(c is -5) # 這會印出什麼？ 

c = c - 1 
print(c is -6) # 這會印出什麼？



Q. 以下程式碼的執行結果為何？

1) True / True / True                                   2) True / True / False 

3) False / False / True                                4) False / False / False

a = 7 
b = 11 
c = a - b 
print(c is -4) # 這會印出什麼？ 

c = c - 1 
print(c is -5) # 這會印出什麼？ 

c = c - 1 
print(c is -6) # 這會印出什麼？
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Python 裡的小整數
>>> a = 256 
>>> b = 256 
>>> a is b 
True 

>>> a = 257 
>>> b = 257 
>>> a is b 
False



Q. 以下程式碼的執行結果為何？

1) True / True                                               2) True / False 

3) False / True                                             4) False / False

a = float("nan")     # NaN 
b = float("nan")     # NaN 
print(a == a)        # NaN 不等於任何值，所以這裡會印出 True 

print([a] == [a])    # 這裡會印出什麼？ 
print([a] == [b])    # 這裡會印出什麼？



Q. 以下程式碼的執行結果為何？

1) True / True                                               2) True / False 

3) False / True                                             4) False / False

a = float("nan")     # NaN 
b = float("nan")     # NaN 
print(a == a)        # NaN 不等於任何值，所以這裡會印出 True 

print([a] == [a])    # 這裡會印出什麼？ 
print([a] == [b])    # 這裡會印出什麼？
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神奇的 NaN？
1.在 Python 裡的 NaN 是一個浮點數，根據 IEEE 754 的定義，如果拿 NaN 

跟任何值比較都會得到 False，包括它自己本身！ 

2. Python 的 List 的比較邏輯是先檢查元素「個數」是否相同。 

3.如果數量一樣，接下來比較每個元素是不是同一顆物件，也就是比較記憶體位置。 

4.原始碼：Objects/listobject.c（函數名稱 list_richcompare）



Q. 以下程式碼的執行結果為何？

1) True / True                                               2) True / False 

3) False / True                                             4) False / False

華安 = (9, 5, 2, 7) 
print(sorted(華安) == sorted(華安))       # 會印出什麼？ 
print(reversed(華安) == reversed(華安))   # 會印出什麼？



Q. 以下程式碼的執行結果為何？

1) True / True                                               2) True / False 

3) False / True                                             4) False / False

華安 = (9, 5, 2, 7) 
print(sorted(華安) == sorted(華安))       # 會印出什麼？ 
print(reversed(華安) == reversed(華安))   # 會印出什麼？
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sorted vs reversed
1. sorted() 函數的回傳值是一個排序好的 List，也就是會得到 [2, 5, 7, 9] 

2. reversed() 函數的回傳值是一個 Iterator，而兩次 reversed() 產生的 

Iterator 是不一樣東西



Q. 以下程式碼的執行結果為何？

1) [0, 1, 2]                                                       2) [0, 1, 2, 0, 1, 2] 

3) [ ]                                                              4) 語法錯誤無法執行

numbers = (i for i in range(3)) 

a = list(numbers) 
b = list(numbers) 

print(a + b)   # 會印出什麼？



Q. 以下程式碼的執行結果為何？

1) [0, 1, 2]                                                       2) [0, 1, 2, 0, 1, 2] 

3) [ ]                                                              4) 語法錯誤無法執行

numbers = (i for i in range(3)) 

a = list(numbers) 
b = list(numbers) 

print(a + b)   # 會印出什麼？
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Python 的「產生器（Generator）」
1. (i for i in range(3)) 不會產生一個串列，而是一個「產生器」。 

2.產生器不是一個具體的資料，而是可以每次跟它討一點東西。 

3.使用第一次 list() 的時候就會把全部內容拿光，所以 a 是 [0, 1, 2] 

4.但是 b 就沒東西可以拿了，所以 b 是 [] 

5. a + b 就等於是 [0, 1, 2] + []，所以最後答案是 [0, 1, 2]



Q. 以下程式碼的執行結果為何？

1) True / True / True                                   2) True / True / False 

3) False / True / False                                4) 少騙我了，這程式根本不會動！

print(type(1) == type(-1))            # 會印出什麼？ 
print(1 ** 1 == 1 ** -1)              # 會印出什麼？ 
print(type(1 ** 1) == type(1 ** -1))  # 會印出什麼？



Q. 以下程式碼的執行結果為何？
print(type(1) == type(-1))            # 會印出什麼？ 
print(1 ** 1 == 1 ** -1)              # 會印出什麼？ 
print(type(1 ** 1) == type(1 ** -1))  # 會印出什麼？

1) True / True / True                                   2) True / True / False 

3) False / True / False                                4) 少騙我了，這程式根本不會動！
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Python 的 N 次方
1. type(1) == type(-1) 都是整數，所以兩個都是 int 

2. 1 ** 1 == 1 ** -1，數字 1 的 1 次方或 -1 次方都是 1？其實不太對，1 

的 1 次方是 1 沒有錯，但 1 的 -1 次方就不是 1 了，是 1.0。 

3.在 Python 拿整數 1 跟浮點數 1.0 做等號的比較會得到 True 

4. type(1 ** 1) == type(1 ** -1) 就不是了，這裡一個是 int，一個是 

float。



Q. 以下這 4 種字串串接方式，哪一種的效能最差？

1) str1                                                            2) str2 

3) str3                                                          4) str4

# str1 使用 + 串接 
str1 = "Hello " + "World" 

# str2 使用 += 串接 
str2 = "Hello " 
str2 += "World"

# str3 使用 F 字串 
a = "Hello" 
b = "World" 
str3 = f"{a} {b}" 

# str4 使用串列的 .join 方法 
words = ["Hello", "World"] 
str4 = " ".join(words)



Q. 以下這 4 種字串串接方式，哪種的效能最差？

1) str1                                                            2) str2 

3) str3                                                          4) str4

# str1 使用 + 串接 
str1 = "Hello " + "World" 

# str2 使用 += 串接 
str2 = "Hello " 
str2 += "World"

# str3 使用 F 字串 
a = "Hello" 
b = "World" 
str3 = f"{a} {b}" 

# str4 使用串列的 .join 方法 
words = ["Hello", "World"] 
str4 = " ".join(words)
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 參考資料：https://pythonbook.cc/articles/string-concatenation-performance-in-python



Q. 以下程式碼的執行結果為何？

1) True / True                                               2) True / False 

3) False / True                                             4) False / False

# 內建函數 isinstance 可用來判斷某個值是不是某種類型，例如： 
# isinstance(9527, int)     #=> True 
# isinstance("Kitty", int)  #=> False 

isinstance(object, type) # 會印出什麼？ 
isinstance(type, object) # 會印出什麼？



Q. 以下程式碼的執行結果為何？

1) True / True                                               2) True / False 

3) False / True                                             4) False / False

# 內建函數 isinstance 可用來判斷某個值是不是某種類型，例如： 
# isinstance(9527, int)     #=> True 
# isinstance("Kitty", int)  #=> False 

isinstance(object, type) # 會印出什麼？ 
isinstance(type, object) # 會印出什麼？
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爸爸的爸爸叫爺爺？
1.在 Python 裡的所有類別，包括 type 類別本身，都是 type 類別生出來的，

所以 isinstance(object, type) 會得到 True。 

2.在 Python 3 所有類別的最上層類別都是 object 類別，所以 

isinstance(任何東西, object) 這句永遠都會成立。 

3.承上，在 Python 所有的東西都是物件，type 類別本身也是物件，所以 

isinstance(type, object) 也會得到 True。



Q. 以下程式碼的執行結果為何？

1) True / False / True                                  2) False / False / False 

3) False / True / True                                 4) True / True / True

# all([True, True, True])   => True 
# all([True, False, True])  => False 

a = [] 
b = [[]] 
c = [[[]]] 

print(all(a)) # 會印出什麼？ 
print(all(b)) # 會印出什麼？ 
print(all(c)) # 會印出什麼？



Q. 以下程式碼的執行結果為何？

1) True / False / True                                  2) False / False / False 

3) False / True / True                                 4) True / True / True

# all([True, True, True])   => True 
# all([True, False, True])  => False 

a = [] 
b = [[]] 
c = [[[]]] 

print(all(a)) # 會印出什麼？ 
print(all(b)) # 會印出什麼？ 
print(all(c)) # 會印出什麼？
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all 全部條件都滿足？
1.在 Python 裡空串列 [] 會被當做 False 看待，所以 all([[]]) 相當於 

all([False])，答案是 False。 

2. [[]] 是一個「包含空串列」的串列，所以它不是一個空的串列。有點像是箱子裡

面裝了一個箱子，就算內層的箱子是空的，對外層的箱子來說它也是有裝東西的。

所以 all([[[]]]) 等於是 all([True]) 的效果。 

3. all([]) 的話呢？
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 參考資料：https://kaochenlong.com/2024/10/09/vacuous-truth.html
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好玩嗎？好玩最重要！
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工商服務
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Google	
GeminiiThome 鐵人賽 

主題：為你自己學 Gemini
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iThome 鐵人賽 
主題：為你自己學 n8n
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AI Coding 實作工作坊（線上直播） 
9/14（日） 13:00 ~ 17:00，共 4 小時

Claude 
Code


