
冷知識篇

五倍學院

為你自己學
PYTHON

高見龍

五倍學院

自我介紹

高見龍 @ 五倍學院

๏ 程式開發 ≒ 30 年

๏ 教學經驗 ≒ 16 年

๏ 出版：

๏「為你自己學 Git」

๏「為你自己學 Ruby on Rails」

๏「為你自己學 Python」

๏ 是個喜歡打魔物獵人而且希望可以寫一
輩子程式的電腦阿宅

高見龍

五倍學院

你寫 Python 嗎？

五倍學院

你是不是用別的語言在寫 Python？

五倍學院

重點是好玩！
（提示：可能還會有獎品）

五倍學院

關於這本書...

自己做一次就會知道在台灣寫電腦書不會賺錢...

五倍學院

Q. 以下這幾種程式語言，誰最老？

1) Java 2) JavaScript 3) Python

4) Ruby 5) PHP

1) Java (1995) 2) JavaScript (1995) 3) Python (1991)

4) Ruby (1995) 5) PHP (1995)

Q. 以下這幾種程式語言，誰最老？

Q. 以下程式碼的執行結果為何？

1) ["小傑", "雷歐力", "酷拉皮卡"] 2) ["奇犽", "西索", "尼飛彼多"]

3) 別騙我了，這程式根本不會動 4) 我只想整套獵人卡片！

def add_card(bk, card):
 bk.append(card)
 bk = ["奇犽", "西索", "尼飛彼多"]

book = ["小傑", "雷歐力"]
add_card(book, "酷拉皮卡")

print(book) # 這會印出什麼？

Q. 以下程式碼的執行結果為何？

1) ["小傑", "雷歐力", "酷拉皮卡"] 2) ["奇犽", "西索", "尼飛彼多"]

3) 別騙我了，這程式根本不會動 4) 我只想整套獵人卡片！

def add_card(bk, card):
 bk.append(card)
 bk = ["奇犽", "西索", "尼飛彼多"]

book = ["小傑", "雷歐力"]
add_card(book, "酷拉皮卡")

print(book) # 這會印出什麼？

Q. 以下程式碼的執行結果為何？

1) 1 2) 101

3) 100 4) 程式會出錯

x = 100

def add_one(x):
 x = x + 1
 return x

add_one(x)
print(x) # 會印出什麼？

Q. 以下程式碼的執行結果為何？

1) 1 2) 101

3) 100 4) 程式會出錯

x = 100

def add_one(x):
 x = x + 1
 return x

add_one(x)
print(x) # 會印出什麼？

五倍學院

Python 的變數宣告？
Python 沒有像其他程式語言一樣有 var 或 let 的「宣告變數」關鍵字，當遇

到 x = 1 的寫法的時候，Python 會從「作用域」來判斷是不是需要宣告一個新的

變數 x，還是試著去找既有的變數 x 然後把它的值設定成 1。

 參考資料：https://pythonbook.cc/chapters/basic/function#a--1

Q. 以下程式碼的執行結果為何？

1) 還是 0 2) 1

3) 2 4) 這程式會出錯

i = 0

def add_i():
 i = i + 1

add_i()
print(i) # 這會印出什麼

Q. 以下程式碼的執行結果為何？

1) 還是 0 2) 1

3) 2 4) 這程式會出錯

i = 0

def add_i():
 i = i + 1

add_i()
print(i) # 這會印出什麼

Q. 最後印出來的值，哪一個會跟其它三個不同？

1) res1 2) res2

3) res3 4) res4

檔案：hello.py
a = 100
b = 200

def hey():
 return 300

res1 = 300
res2 = 100 + 200
res3 = a + b
res4 = hey()

print(id(res1))
print(id(res2))
print(id(res3))
print(id(res4))

Q. 最後印出來的值，哪一個會跟其它三個不同？
print(id(res1))
print(id(res2))
print(id(res3))
print(id(res4))

1) res1 2) res2

3) res3 4) res4

檔案：hello.py
a = 100
b = 200

def hey():
 return 300

res1 = 300
res2 = 100 + 200
res3 = a + b
res4 = hey()

五倍學院

參考資料：https://kaochenlong.com/2024/10/13/same-value-but-different-object-in-python.html

Q. 以下程式碼的執行結果為何？

1) True / True / True 2) True / True / False

3) False / False / True 4) False / False / False

a = 7
b = 11
c = a - b
print(c is -4) # 這會印出什麼？

c = c - 1
print(c is -5) # 這會印出什麼？

c = c - 1
print(c is -6) # 這會印出什麼？

Q. 以下程式碼的執行結果為何？

1) True / True / True 2) True / True / False

3) False / False / True 4) False / False / False

a = 7
b = 11
c = a - b
print(c is -4) # 這會印出什麼？

c = c - 1
print(c is -5) # 這會印出什麼？

c = c - 1
print(c is -6) # 這會印出什麼？

五倍學院

Python 裡的小整數
>>> a = 256
>>> b = 256
>>> a is b
True

>>> a = 257
>>> b = 257
>>> a is b
False

Q. 以下程式碼的執行結果為何？

1) True / True 2) True / False

3) False / True 4) False / False

a = float("nan") # NaN
b = float("nan") # NaN
print(a == a) # NaN 不等於任何值，所以這裡會印出 True

print([a] == [a]) # 這裡會印出什麼？
print([a] == [b]) # 這裡會印出什麼？

Q. 以下程式碼的執行結果為何？

1) True / True 2) True / False

3) False / True 4) False / False

a = float("nan") # NaN
b = float("nan") # NaN
print(a == a) # NaN 不等於任何值，所以這裡會印出 True

print([a] == [a]) # 這裡會印出什麼？
print([a] == [b]) # 這裡會印出什麼？

五倍學院

神奇的 NaN？
1.在 Python 裡的 NaN 是一個浮點數，根據 IEEE 754 的定義，如果拿 NaN

跟任何值比較都會得到 False，包括它自己本身！

2. Python 的 List 的比較邏輯是先檢查元素「個數」是否相同。

3.如果數量一樣，接下來比較每個元素是不是同一顆物件，也就是比較記憶體位置。

4.原始碼：Objects/listobject.c（函數名稱 list_richcompare）

Q. 以下程式碼的執行結果為何？

1) True / True 2) True / False

3) False / True 4) False / False

華安 = (9, 5, 2, 7)
print(sorted(華安) == sorted(華安)) # 會印出什麼？
print(reversed(華安) == reversed(華安)) # 會印出什麼？

Q. 以下程式碼的執行結果為何？

1) True / True 2) True / False

3) False / True 4) False / False

華安 = (9, 5, 2, 7)
print(sorted(華安) == sorted(華安)) # 會印出什麼？
print(reversed(華安) == reversed(華安)) # 會印出什麼？

五倍學院

sorted vs reversed
1. sorted() 函數的回傳值是一個排序好的 List，也就是會得到 [2, 5, 7, 9]

2. reversed() 函數的回傳值是一個 Iterator，而兩次 reversed() 產生的

Iterator 是不一樣東西

Q. 以下程式碼的執行結果為何？

1) [0, 1, 2] 2) [0, 1, 2, 0, 1, 2]

3) [] 4) 語法錯誤無法執行

numbers = (i for i in range(3))

a = list(numbers)
b = list(numbers)

print(a + b) # 會印出什麼？

Q. 以下程式碼的執行結果為何？

1) [0, 1, 2] 2) [0, 1, 2, 0, 1, 2]

3) [] 4) 語法錯誤無法執行

numbers = (i for i in range(3))

a = list(numbers)
b = list(numbers)

print(a + b) # 會印出什麼？

五倍學院

Python 的「產生器（Generator）」
1. (i for i in range(3)) 不會產生一個串列，而是一個「產生器」。

2.產生器不是一個具體的資料，而是可以每次跟它討一點東西。

3.使用第一次 list() 的時候就會把全部內容拿光，所以 a 是 [0, 1, 2]

4.但是 b 就沒東西可以拿了，所以 b 是 []

5. a + b 就等於是 [0, 1, 2] + []，所以最後答案是 [0, 1, 2]

Q. 以下程式碼的執行結果為何？

1) True / True / True 2) True / True / False

3) False / True / False 4) 少騙我了，這程式根本不會動！

print(type(1) == type(-1)) # 會印出什麼？
print(1 ** 1 == 1 ** -1) # 會印出什麼？
print(type(1 ** 1) == type(1 ** -1)) # 會印出什麼？

Q. 以下程式碼的執行結果為何？
print(type(1) == type(-1)) # 會印出什麼？
print(1 ** 1 == 1 ** -1) # 會印出什麼？
print(type(1 ** 1) == type(1 ** -1)) # 會印出什麼？

1) True / True / True 2) True / True / False

3) False / True / False 4) 少騙我了，這程式根本不會動！

五倍學院

Python 的 N 次方
1. type(1) == type(-1) 都是整數，所以兩個都是 int

2. 1 ** 1 == 1 ** -1，數字 1 的 1 次方或 -1 次方都是 1？其實不太對，1

的 1 次方是 1 沒有錯，但 1 的 -1 次方就不是 1 了，是 1.0。

3.在 Python 拿整數 1 跟浮點數 1.0 做等號的比較會得到 True

4. type(1 ** 1) == type(1 ** -1) 就不是了，這裡一個是 int，一個是

float。

Q. 以下這 4 種字串串接方式，哪一種的效能最差？

1) str1 2) str2

3) str3 4) str4

str1 使用 + 串接
str1 = "Hello " + "World"

str2 使用 += 串接
str2 = "Hello "
str2 += "World"

str3 使用 F 字串
a = "Hello"
b = "World"
str3 = f"{a} {b}"

str4 使用串列的 .join 方法
words = ["Hello", "World"]
str4 = " ".join(words)

Q. 以下這 4 種字串串接方式，哪種的效能最差？

1) str1 2) str2

3) str3 4) str4

str1 使用 + 串接
str1 = "Hello " + "World"

str2 使用 += 串接
str2 = "Hello "
str2 += "World"

str3 使用 F 字串
a = "Hello"
b = "World"
str3 = f"{a} {b}"

str4 使用串列的 .join 方法
words = ["Hello", "World"]
str4 = " ".join(words)

五倍學院

 參考資料：https://pythonbook.cc/articles/string-concatenation-performance-in-python

Q. 以下程式碼的執行結果為何？

1) True / True 2) True / False

3) False / True 4) False / False

內建函數 isinstance 可用來判斷某個值是不是某種類型，例如：
isinstance(9527, int) #=> True
isinstance("Kitty", int) #=> False

isinstance(object, type) # 會印出什麼？
isinstance(type, object) # 會印出什麼？

Q. 以下程式碼的執行結果為何？

1) True / True 2) True / False

3) False / True 4) False / False

內建函數 isinstance 可用來判斷某個值是不是某種類型，例如：
isinstance(9527, int) #=> True
isinstance("Kitty", int) #=> False

isinstance(object, type) # 會印出什麼？
isinstance(type, object) # 會印出什麼？

五倍學院

爸爸的爸爸叫爺爺？
1.在 Python 裡的所有類別，包括 type 類別本身，都是 type 類別生出來的，

所以 isinstance(object, type) 會得到 True。

2.在 Python 3 所有類別的最上層類別都是 object 類別，所以

isinstance(任何東西, object) 這句永遠都會成立。

3.承上，在 Python 所有的東西都是物件，type 類別本身也是物件，所以

isinstance(type, object) 也會得到 True。

Q. 以下程式碼的執行結果為何？

1) True / False / True 2) False / False / False

3) False / True / True 4) True / True / True

all([True, True, True]) => True
all([True, False, True]) => False

a = []
b = [[]]
c = [[[]]]

print(all(a)) # 會印出什麼？
print(all(b)) # 會印出什麼？
print(all(c)) # 會印出什麼？

Q. 以下程式碼的執行結果為何？

1) True / False / True 2) False / False / False

3) False / True / True 4) True / True / True

all([True, True, True]) => True
all([True, False, True]) => False

a = []
b = [[]]
c = [[[]]]

print(all(a)) # 會印出什麼？
print(all(b)) # 會印出什麼？
print(all(c)) # 會印出什麼？

五倍學院

all 全部條件都滿足？
1.在 Python 裡空串列 [] 會被當做 False 看待，所以 all([[]]) 相當於

all([False])，答案是 False。

2. [[]] 是一個「包含空串列」的串列，所以它不是一個空的串列。有點像是箱子裡

面裝了一個箱子，就算內層的箱子是空的，對外層的箱子來說它也是有裝東西的。

所以 all([[[]]]) 等於是 all([True]) 的效果。

3. all([]) 的話呢？

五倍學院

 參考資料：https://kaochenlong.com/2024/10/09/vacuous-truth.html

五倍學院

好玩嗎？好玩最重要！

五倍學院

工商服務

五倍學院

Google	
GeminiiThome 鐵人賽

主題：為你自己學 Gemini

五倍學院

iThome 鐵人賽
主題：為你自己學 n8n

五倍學院

AI Coding 實作工作坊（線上直播）
9/14（日） 13:00 ~ 17:00，共 4 小時

Claude
Code

