
從紅燈到綠燈
范聖佑 / 高見龍

JCConf 2024 x TKUG

從紅燈到綠燈
范聖佑 / 高見龍

JCConf 2024 x TKUG

關於 TDD

JCConf 2024 x TKUG

TDD = Test-Driven Development

JCConf 2024 x TKUG

TDD = Test-Driven Development

JCConf 2024 x TKUG

TDD 是一種開發方法

JCConf 2024 x TKUG

TDD != Debugger

JCConf 2024 x TKUG

JCConf 2024 x TKUG

為什麼不寫測試？

JCConf 2024 x TKUG

為什麼不寫測試？

● 「光寫主程式都沒時間了，哪裡還有時間寫測試」

● 「跑測試太慢了」

● 「測試很脆弱耶，不小心改一下就爛掉了」

● 「不知道怎麼寫」

JCConf 2024 x TKUG

JCConf 2024 x TKUG

安裝 & 執行

💪

JCConf 2024 x TKUG

3A = Arrange, Act, Assert

JCConf 2024 x TKUG

情境：發送 Email 💌

JCConf 2024 x TKUG

Live Demo

💪

JCConf 2024 x TKUG

玩真的還是玩假的？

JCConf 2024 x TKUG

相依性 Dependency

JCConf 2024 x TKUG

相依性

● 呼叫其它類別的函數

● 金流刷卡

● 網路服務

● 還沒寫好的 API

JCConf 2024 x TKUG

Mock vs Stub

JCConf 2024 x TKUG

Mock vs Stub

● Stub = 設定固定的回傳值，用來填充實際的依賴，使測試更可控。

● Mock = 模擬物件行為，用來驗證方法是否被呼叫或是以及呼叫的次數。

● 相同與不同：

● 都是用來替代和模擬外部依賴的手法，讓測試在不依賴真實環境下進行。

● Mock 會檢查有沒有做對的事（例如，是否正確呼叫方法），而 Stub 只是給你固定的答
案，不管你怎麼用。

JCConf 2024 x TKUG

fn processOrder(order):
 if paymentService.charge(order):
 notifyService.sendMail(order.customerEmail, "訂單已完成")

🐈⬛

🐈⬛

JCConf 2024 x TKUG

class PaymentServiceStub:
 fn charge(order):
 return true

class NotificationServiceStub:
 fn sendMail(email, message):
 // 嘿嘿！不做事

💪

💪

Stub

JCConf 2024 x TKUG

class TestProcessOrderWithStub():
 paymentService = PaymentServiceStub()
 notificationService = new NotificationServiceStub()

 order = Order()
 order.customerEmail = "eddie@5xcampus.com"

fn processOrder(order):
 if paymentService.charge(order):
 notifyService.sendMail(order.customerEmail, "訂單已完成")

 processOrder(order)

💪

Stub

JCConf 2024 x TKUG

class PaymentServiceMock:
 let wasCalled = false

 fn charge(order):
 this.wasCalled = true
 return true

Mock

class NotificationServiceMock:
 let wasCalled = false
 let receivedEmail = null
 let receivedMessage = null

 fn sendMail(email, message):
 this.wasCalled = true
 this.receivedEmail = email
 this.receivedMessage = message

💪

💪

JCConf 2024 x TKUG

class TestProcessOrderWithMock():
 paymentService = PaymentServiceMock()
 notificationService = NotificationServiceMock()

 order = Order()
 order.customerEmail = "eddie@5xcampus.com"

 processOrder(order)

 assert(paymentService.wasCalled == true)
 assert(notificationService.wasCalled == true)
 assert(notificationService.receivedEmail == "eddie@5xcampus.com")
 assert(notificationService.receivedMessage == "訂單已完成")

Mock
💪

JCConf 2024 x TKUG

Live Demo

💪

JCConf 2024 x TKUG

常見問題

JCConf 2024 x TKUG

常見問題

● 「要怎麼測試還不存在的程式碼？」

● 「我怎麼知道哪些東西要測？」

● 「TDD 是寫程式來測試程式，那麼這些 TDD 的程式要誰來測？」

JCConf 2024 x TKUG

結論：為什麼寫測試？

JCConf 2024 x TKUG

寫測試是為了...

● 測試本身就是規格（Spec）

● 寫出更有信心的程式碼

● 可以做出比較好的設計

● 將來有重構（Refactor）的可能性

從紅燈到綠燈
范聖佑 / 高見龍

